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Jet structure in the RHIC and LHC era 

! From General Meeting: 
!  Jet measurements in heavy-ion collisions have evolved in the last year 

!  Truly the era of jet structure 
!  HEP inspired observables 

!  Which observables (new and old) should the next generation jet (and 
ϒ!)  detector focus on? 
!  √SNN dependence ! 200 GeV vs 2.76, 5 TeV 
!  Focus on differential measures at 200 GeV 

! What are we going to show in the first QM after sPHENIX turns on? 
!  Statistics? 
!  Detector calibration? 
!  Comparison to existing LHC/RHIC results? 
!  State-of-the-art? 

! What should we show for QM 2017? 



 Caveats 

! I have probably overlooked some observables/results, it is 
not intentional 

! I am prepared to be convinced other “day 1” analyses are 
better for our program 
!  This is a brainstorm of what we have and could do 
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Jet structure in the RHIC and LHC era 

! Observables 
!  Jet grooming 
!  Jet fragmentation (Moments?) 
!  Jet mass 
!  Subjets 
!  γ-jet 
!  Jet shape 
!  Jet girth 
!  pTD, LeSub 
!  Spectra (jet and high pT hadron) 
!  Dihadron/γ-hadron Correlations 
!  AJ, Neighboring jets, missing pT, Jet-h, h-Jet and others 

Algorithms	





Jet Grooming (zg) 

!  Observable: Momentum fraction carried by the subleading 
branch of first splitting  
!  Independent of flavor (q/g fraction irrelevant) 

!  Measured at LHC (CMS) and RHIC 
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Jet splitting function 
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Peripheral PbPb and pp 
very similar CMS-PAS-HIN-16-006 

Observable: Momentum fraction carried by the  
subleading branch of first splitting 

 
Weak dependence on αs 
 
Weak dependence on jet pT 
 
The same for quarks and gluons 
à Energy loss changing q/g fraction irrelevant 
 

pp 
PbPb 

dσ DGLAP
vac ~ αs

z

140<pT,jet<160 GeV 

With groomed jets (SoftDrop): soft large angle 
radiation removed to define the hardest splitting 

Larkoski, Marzani, Thaler 
Phys. Rev. D91:111501 (2015) 

zg =
min(pT ,1, pT ,2 )
pT ,1 + pT ,2

PbPb vs pp 
pT,jet: 140-160 GeV 
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Modification of subjet balance observed in central PbPb collisions 
Branching more imbalanced in central PbPb 

CMS-PAS-HIN-16-006 

PbPb vs pp 
pT,jet: 140-160 GeV 
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Modification of subjet balance observed in central PbPb collisions 
Branching more imbalanced in central PbPb 

CMS-PAS-HIN-16-006 

STAR zg 
No difference between AuAu and pp! 
 
Inconsistent with CMS? No, very different measurement 
Low pT jets, biased by trigger requirement 
Large vacuum formation time (~10 fm, outside medium) 
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Trigger 
Recoil 



Jet Fragmentation 

! Fragmentation functions ! 
modification of parton 
showers 
! transverse momentum and 

longitudinal momentum 
fraction  

! Measured at LHC 
(Atlas,CMS) 

! Not Measured at RHIC 

z = ptrack||

pjet
          D(z) = 1

N jet

dNch

dz

ζ = ln 1
z



Jet Mass 

! Measure “mass” of jet from 
constituents 
! Allows a “second” axis of 

comparison 
! Background method? 

M = p2 − p2T − p
2
z

p = pTi coshηi
i=1

n

∑

pz = pTi sinhηi
i=1

n

∑



Subjets 

! Subjets <-> Splitting 

! Less effected by background 

! I’m missing some details here, but this could be an interesting 
pursuit 

JEWEL Preliminary Results
๏ Are we able to find some observable that provide us with a 

tool to select “pure” samples of quenched jets?
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Not possible to use a global “cut” on these observables to select 
pure samples of quenched jets...

BUT, huge power of discrimination between the models!!
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Liliana, Lisbon 2014 
 
Discriminates between 
models? 



γ-Jet 

! Golden channel! (A key series of observables) 

! Measured at LHC (Atlas, CMS) 

! Not Measured at RHIC (γ-hadron!) 

! Calo only measure?!? (XJγ) 

XJγ =
pT , jet
pT ,γ



Jet Shape 

! Sum Transverse momentum 

! Measured at LHC (CMS) 

! Not Measured at RHIC 

! We want to measure the modification of the jet in both constituent 
momentum and position from the jet axis! 

! γ-jet shape?  (See SCET group!) 

ρ(r) = 1
δr

1
N jet

pT ,track
tracks∈[ra,rb )
∑

pT , jetjets
∑



Jet Girth 

! g is pT weighted width of the 
jet  
!  broadening ! enhanced g  
!  collimation ! reduced g  

! Measured at LHC (ALICE) 

! Not Measured at RHIC 

! Low enough pT for overlap 

Jet shapes: jet width 
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Jet width smaller in Pb+Pb 
than pp (PYTHIA) 

Jets in medium narrower than in vacuum 
But… comparing at same jet pT – after energy loss 

JEWEL model shows 
similar trend 

pT-weighted jet width Small jets: R=0.2 g =
pT ,trackr

tracks
∑
pT , jet



pTD 

! pTD measures pT dispersion: 

! Less constituents ! more 
democratic splitting ! reduced 
pTD 

! Measured at LHC (ALICE) 

! Not Measured at RHIC 

! Low enough pT for overlap 

! Differential? 

Oliver Busch – LHC Seminar 05/2016
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• larger pTD in Pb-Pb compared to PYTHIA  
        indicates fewer constituents in quenched jets  
   
• LeSub in Pb-Pb in good agreement with Pb-Pb:  
        hardest splittings likely unaffected 
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LeSub 

! LeSub characterizes hardest 
splitting 
!  Insensitive against background 

! Measured at LHC (ALICE) 

! Not Measured at RHIC 

! Low enough pT for overlap 

! Simple ! Differential? 

Oliver Busch – LHC Seminar 05/2016
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• larger pTD in Pb-Pb compared to PYTHIA  
        indicates fewer constituents in quenched jets  
   
• LeSub in Pb-Pb in good agreement with Pb-Pb:  
        hardest splittings likely unaffected 
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Spectra/dihadron/γ-hadron 

! “Traditional measures” 
! Good benchmark to connect with prior data 
! Community expectations ! We all “understand” RAA 

! Differential? 

! In the case of spectra-type 

    observables we may want to 

    delay to “day 2” as ratio 

    measures require less 

    calibration 
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Figure 5. (a) The ⇠ dependent I

AA

for di↵erent away-side integration ranges:
|��� ⇡| < ⇡/2 (black circles), |��� ⇡| <
⇡/3 (blue squares), and |�� � ⇡| < ⇡/6
(red triangles). (b) The ratio of the I

AA

for the full (|�� � ⇡| < ⇡/2) and narrow
(|�� � ⇡| < ⇡/6) away-side integration
ranges.

larger z

T

range accessed using a combination of data from 2007 and 2010 and going down to
0.5 in associated hadron p

T

reveals an enhancement at high ⇠ indicative of increased soft parti-
cle production in response to the propagation of the initial parton through the medium. This
enhancement is qualitatively consistent with the trend seen at the LHC through direct compar-
ison of the fragmentation function for fully reconstructed jets in peripheral and central Pb+Pb
[11, 12], and also with complementary measurements of jet-hadron correlations [13]. When the
range of azimuthal angle integration of the away-side is restricted, this enhancement is reduced
significantly, consistent with a broadening of the away-side distribution. Related measurements
at LHC energies do not show a broadening of the distributions of fully reconstructed jets with
respect to direct photon triggers [14]. However, evidence for the broadening of the jets them-
selves has been seen through studies of the jet profile, ⇢(r) [12], and the relative suppression of
larger jet sizes (R=0.5,0.4,0.3) to a narrow baseline (R=0.2) [15]. Thus the angular dependence
of the modification to I

AA

shown here suggests that the medium enhances the production of
soft jet fragments at large angles relative to the jet axis.
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QM2017 

! My thoughts were:	


!  Jet Fragmentation – Showcases both calorimeter and tracking 

performance – differential	



!  γ-jet correlations – Photons have been highly advertised, also the 
community views this as a “golden” channel	



!  Calo only?	



!  Something basic ! high pT spectra?	



!  Something new? 	




